28 research outputs found

    Discriminative Features via Generalized Eigenvectors

    Full text link
    Representing examples in a way that is compatible with the underlying classifier can greatly enhance the performance of a learning system. In this paper we investigate scalable techniques for inducing discriminative features by taking advantage of simple second order structure in the data. We focus on multiclass classification and show that features extracted from the generalized eigenvectors of the class conditional second moments lead to classifiers with excellent empirical performance. Moreover, these features have attractive theoretical properties, such as inducing representations that are invariant to linear transformations of the input. We evaluate classifiers built from these features on three different tasks, obtaining state of the art results

    Online Importance Weight Aware Updates

    Full text link
    An importance weight quantifies the relative importance of one example over another, coming up in applications of boosting, asymmetric classification costs, reductions, and active learning. The standard approach for dealing with importance weights in gradient descent is via multiplication of the gradient. We first demonstrate the problems of this approach when importance weights are large, and argue in favor of more sophisticated ways for dealing with them. We then develop an approach which enjoys an invariance property: that updating twice with importance weight hh is equivalent to updating once with importance weight 2h2h. For many important losses this has a closed form update which satisfies standard regret guarantees when all examples have h=1h=1. We also briefly discuss two other reasonable approaches for handling large importance weights. Empirically, these approaches yield substantially superior prediction with similar computational performance while reducing the sensitivity of the algorithm to the exact setting of the learning rate. We apply these to online active learning yielding an extraordinarily fast active learning algorithm that works even in the presence of adversarial noise
    corecore